Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 5271, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754104

RESUMO

Although the properties of the actin cytoskeleton in the cytoplasm are well characterized, the regulation and function of nuclear actin filaments are only recently emerging. We previously demonstrated serum-induced, transient assembly of filamentous actin within somatic cell nuclei. However, the extracellular cues, cell surface receptors as well as underlying signaling mechanisms have been unclear. Here we demonstrate that physiological ligands for G protein-coupled receptors (GPCRs) promote nuclear F-actin assembly via heterotrimeric Gαq proteins. Signal-induced nuclear actin responses require calcium release from the endoplasmic reticulum (ER) targeting the ER-associated formin INF2 at the inner nuclear membrane (INM). Notably, calcium signaling promotes the polymerization of linear actin filaments emanating from the INM towards the nuclear interior. We show that GPCR and calcium elevations trigger nuclear actin-dependent alterations in chromatin organization, uncovering a general cellular mechanism by which physiological ligands and calcium promote nuclear F-actin assembly for rapid responses towards chromatin dynamics.


Assuntos
Actinas/metabolismo , Cálcio/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Sinalização do Cálcio , Cromatina/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Ligantes , Camundongos , Mitocôndrias/metabolismo , Células NIH 3T3 , Polimerização , Receptores Acoplados a Proteínas G/genética
2.
Nat Cell Biol ; 19(12): 1389-1399, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29131140

RESUMO

Re-establishment of nuclear structure and chromatin organization after cell division is integral for genome regulation or development and is frequently altered during cancer progression. The mechanisms underlying chromatin expansion in daughter cells remain largely unclear. Here, we describe the transient formation of nuclear actin filaments (F-actin) during mitotic exit. These nuclear F-actin structures assemble in daughter cell nuclei and undergo dynamic reorganization to promote nuclear protrusions and volume expansion throughout early G1 of the cell cycle. Specific inhibition of this nuclear F-actin assembly impaired nuclear expansion and chromatin decondensation after mitosis and during early mouse embryonic development. Biochemical screening for mitotic nuclear F-actin interactors identified the actin-disassembling factor cofilin-1. Optogenetic regulation of cofilin-1 revealed its critical role for controlling timing, turnover and dynamics of F-actin assembly inside daughter cell nuclei. Our findings identify a cell-cycle-specific and spatiotemporally controlled form of nuclear F-actin that reorganizes the mammalian nucleus after mitosis.


Assuntos
Actinas/metabolismo , Cromatina/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Animais , Blastocisto/metabolismo , Núcleo Celular/metabolismo , Tamanho do Núcleo Celular , Montagem e Desmontagem da Cromatina/fisiologia , Cofilina 1/genética , Cofilina 1/metabolismo , Fase G1/fisiologia , Camundongos , Mitose/fisiologia , Modelos Biológicos , Células NIH 3T3 , Optogenética , Multimerização Proteica
3.
Infect Immun ; 83(8): 3268-80, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26056386

RESUMO

The Chlamydiales are an order of obligate intracellular bacteria sharing a developmental cycle inside a cytosolic vacuole, with very diverse natural hosts, from amoebae to mammals. The clinically most important species is Chlamydia trachomatis. Many uncertainties remain as to how Chlamydia organizes its intracellular development and replication. The discovery of new Chlamydiales species from other families permits the comparative analysis of cell-biological events and may indicate events that are common to all or peculiar to some species and more or less tightly linked to "chlamydial" development. We used this approach in the infection of human cells with Waddlia chondrophila, a species from the family Waddliaceae whose natural host is uncertain. Compared to C. trachomatis, W. chondrophila had slightly different growth characteristics, including faster cytotoxicity. The embedding in cytoskeletal structures was not as pronounced as for the C. trachomatis inclusion. C. trachomatis infection generates proteolytic activity by the protease Chlamydia protease-like activity factor (CPAF), which degrades host substrates upon extraction; these substrates were not cleaved in the case of W. chondrophila. Unlike Chlamydia, W. chondrophila did not protect against staurosporine-induced apoptosis. C. trachomatis infection causes Golgi apparatus fragmentation and redirects post-Golgi sphingomyelin transport to the inclusion; both were absent from W. chondrophila-infected cells. When host cells were infected with both species, growth of both species was reduced. This study highlights differences between bacterial species that both depend on obligate intracellular replication inside an inclusion. Some features seem principally dispensable for intracellular development of Chlamydiales in vitro but may be linked to host adaptation of Chlamydia and the higher virulence of C. trachomatis.


Assuntos
Apoptose , Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydiales/crescimento & desenvolvimento , Complexo de Golgi/metabolismo , Infecções por Bactérias Gram-Negativas/metabolismo , Esfingomielinas/metabolismo , Transporte Biológico , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/fisiopatologia , Chlamydia trachomatis/genética , Chlamydiales/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/fisiopatologia , Células HeLa , Humanos
4.
J Bacteriol ; 193(21): 6080-5, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21890702

RESUMO

Streptomyces coelicolor contains two gene clusters putatively involved in wall teichoic acid biosynthesis. Inactivation of the tagF homologue SCO2997 or SCO2584, a component of the Streptomyces spore wall synthesizing complex, affected sporulation. The mutant phenotypes resembled those of mre mutants, suggesting a function of wall teichoic acids in the differentiation of Streptomyces.


Assuntos
Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/genética , Streptomyces coelicolor/crescimento & desenvolvimento , Streptomyces coelicolor/genética , Ácidos Teicoicos/metabolismo , Vias Biossintéticas/genética , Técnicas de Inativação de Genes , Esporos Bacterianos/citologia , Esporos Bacterianos/metabolismo , Streptomyces coelicolor/citologia , Streptomyces coelicolor/metabolismo
5.
J Bacteriol ; 193(7): 1533-42, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21257777

RESUMO

Most bacteria with a rod-shaped morphology contain an actin-like cytoskeleton consisting of MreB polymers, which form helical spirals underneath the cytoplasmic membrane to direct peptidoglycan synthesis for the elongation of the cell wall. In contrast, MreB of Streptomyces coelicolor is not required for vegetative growth but has a role in sporulation. Besides MreB, S. coelicolor encodes two further MreB-like proteins, Mbl and SCO6166, whose function is unknown. Whereas MreB and Mbl are highly similar, SCO6166 is shorter, lacking the subdomains IB and IIB of actin-like proteins. Here, we showed that MreB and Mbl are not functionally redundant but cooperate in spore wall synthesis. Expression analysis by semiquantitative reverse transcription-PCR revealed distinct expression patterns. mreB and mbl are induced predominantly during morphological differentiation. In contrast, sco6166 is strongly expressed during vegetative growth but switched off during sporulation. All genes could be deleted without affecting viability. Even a ΔmreB Δmbl double mutant was viable. Δsco6166 had a wild-type phenotype. ΔmreB, Δmbl, and ΔmreB Δmbl produced swollen, prematurely germinating spores that were sensitive to various kinds of stress, suggesting a defect in spore wall integrity. During aerial mycelium formation, an Mbl-mCherry fusion protein colocalized with an MreB-enhanced green fluorescent protein (MreB-eGFP) fusion protein at the sporulation septa. Whereas MreB-eGFP localized properly in the Δmbl mutant, Mbl-mCherry localization depended on the presence of a functional MreB protein. Our results revealed that MreB and Mbl cooperate in the synthesis of the thickened spore wall, while SCO6166 has a nonessential function during vegetative growth.


Assuntos
Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Streptomyces coelicolor/metabolismo , Sequência de Aminoácidos , Proteínas de Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Mutação , Transporte Proteico , Esporos Bacterianos/fisiologia , Streptomyces coelicolor/genética
6.
Mol Microbiol ; 79(5): 1367-79, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21244527

RESUMO

It is still an open question how an intracellular cytoskeleton directs the synthesis of the peptidoglycan exoskeleton. In contrast to MreB of rod-shaped bacteria, which is essential for lateral cell wall synthesis, MreB of Streptomyces coelicolor has a role in sporulation. To study the function of the S. coelicolor mre gene cluster consisting of mreB, mreC, mreD, pbp2 and sfr, we generated non-polar replacement mutants. The individual mutants were viable and growth of substrate mycelium was not affected. However, all mutants produced enlarged spores, which frequently germinated prematurely and were sensitive to heat, high osmolarity and cell wall damaging agents. Protein-protein interaction assays by bacterial two-hybrid analyses indicated that the S. coelicolor Mre proteins form a spore wall synthesizing complex, which closely resembles the lateral wall synthesizing complex of rod-shaped bacteria. Screening of a genomic library identified several novel putative components of this complex. One of them (sco2097) was deleted. The Δsco2097 mutant formed sensitive spores with an aberrant morphology, demonstrating that SCO2097 is a new player in cell morphogenesis of Streptomyces. Our results suggest that all Mre proteins cooperate with the newly identified proteins in the synthesis of the thickened spore wall required to resist detrimental environmental conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Família Multigênica , Esporos Bacterianos/metabolismo , Streptomyces coelicolor/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Parede Celular/genética , Dados de Sequência Molecular , Esporos Bacterianos/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/crescimento & desenvolvimento
7.
FEBS J ; 274(18): 4766-77, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17697114

RESUMO

Hepatocytes of the periportal and perivenous zones of the liver lobule show marked differences in the contents and activities of many enzymes and other proteins. Previous studies from our and other groups have pointed towards an important role of beta-catenin-dependent signaling in the regulation of expression of genes encoding proteins with preferential perivenous localization, whereas, in contrast, signaling through Ras-dependent pathway(s) may induce a 'periportal' phenotype. We have now conducted a series of experiments to further investigate this hypothesis. In transgenic mice with scattered expression of an activated Ha-ras (Ha-ras(G12V)) mutant in liver, expression of the perivenous markers glutamine synthetase and two cytochrome P450 isoforms was completely abolished in those hepatocytes demonstrating constitutively activated extracellular signal-regulated kinase activity, even though they were located directly adjacent to central veins. Similarly, incubation of primary hepatocytes or hepatoma cells with increasing amounts of serum caused a concentration-dependent attenuation of expression of perivenous marker mRNAs, whereas the expression of periportal markers was increased. The inhibitory effect of high amounts of serum on the expression of perivenous markers was also observed if their expression was stimulated by activation of beta-catenin signaling, and comparable inhibitory effects were seen in cells stably transfected with a T-cell factor/lymphoid-enhancing factor-driven luciferase reporter. Epidermal growth factor could partly mimic serum effects in hepatoma cells, and its effect could be blocked by an inhibitor of extracellular signal-regulated kinase activity. These data suggest that activation of the Ras/mitogen-activated protein kinase (extracellular signal-regulated kinase) pathway favors periportal gene expression while simultaneously antagonizing a perivenous phenotype of hepatocytes.


Assuntos
Biomarcadores , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Soro/química , Transdução de Sinais , beta Catenina/metabolismo , Animais , Proteína Axina , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/genética , Proteínas do Citoesqueleto/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glutamato-Amônia Ligase/genética , Hepatócitos/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Proteína Oncogênica p21(ras)/genética , Fatores de Transcrição TCF/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...